National Cancer Institute


Expert-reviewed information summary about the treatment of ovarian epithelial, fallopian tube, and primary peritoneal cancer.

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of ovarian epithelial, fallopian tube, and primary peritoneal cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Ovarian Epithelial, Fallopian Tube, & Primary Peritoneal Cancer Treatment

Ovarian Epithelial, Fallopian Tube, Primary Peritoneal Cancer

General Information About Ovarian Epithelial Cancer, Fallopian Tube Cancer (FTC), and Primary Peritoneal Cancer (PPC)

This PDQ summary addresses the staging and treatment of ovarian epithelial cancer, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC).

Regardless of the site of origin, the hallmark of these cancers is their early peritoneal spread of metastases. The inclusion of FTC and PPC within the ovarian epithelial cancer designation is generally accepted on the basis of much evidence that points to a common Müllerian epithelium derivation and similar management of these three neoplasms. The hypothesis that many high-grade serous ovarian cancers (the most common histologic subtype) may arise from precursor lesions that originate in the fimbriae of the fallopian tubes has been supported by findings from risk-reducing surgeries in healthy women with or mutations. In addition, histologically similar cancers diagnosed as primary peritoneal carcinomas share molecular findings, such as loss or inactivation of the tumor-suppressor p53 and or proteins. Therefore, high-grade serous adenocarcinomas arising from the fallopian tube and elsewhere in the peritoneal cavity, together with most ovarian epithelial cancers, represent extrauterine adenocarcinomas of Müllerian epithelial origin and are staged and treated similarly to ovarian cancer. Since 2000, FTC and PPC have usually been included in ovarian cancer clinical trials.

Clear cell and endometrioid ovarian cancers that are linked to endometriosis have different gene-expression signatures, as do mucinous subtypes.

Stromal and germ cell tumors are relatively uncommon and comprise fewer than 10% of cases. (Refer to the PDQ summaries on Ovarian Germ Cell Tumors Treatment and Ovarian Low Malignant Potential Tumors Treatment for more information.)

Incidence and Mortality

Epithelial carcinoma of the ovary is one of the most common gynecologic malignancies, with 50% of all cases occurring in women older than 65 years. It is the fifth most frequent cause of cancer death in women.

Estimated new cases and deaths from ovarian cancer in the United States in 2017:

  • New cases: 22,440.
  • Deaths: 14,080.

Anatomy

The fimbriated ends of the fallopian tubes are in close apposition to the ovaries and in the peritoneal space, as opposed to the corpus uteri (body of the uterus) that is located under a layer of peritoneum.

Anatomy of the female reproductive system; drawing shows the uterus, myometrium (muscular outer layer of the uterus), endometrium (inner lining of the uterus), ovaries, fallopian tubes, cervix, and vagina.Normal female reproductive system anatomy.

Risk Factors

Family history and genetic alterations

The most important risk factor for ovarian cancer is a history of ovarian cancer in a first-degree relative (mother, daughter, or sister). Approximately 20% of ovarian cancers are familial, and although most of these are linked to mutations in either the or gene, several other genes have been implicated. The risk is highest in women who have two or more first-degree relatives with ovarian cancer. The risk is somewhat less for women who have one first-degree relative and one second-degree relative (grandmother or aunt) with ovarian cancer.

In most families affected with breast and ovarian cancer syndrome or site-specific ovarian cancer, genetic linkage to the locus on chromosome 17q21 has been identified. , also responsible for some instances of inherited ovarian and breast cancer, has been mapped by genetic linkage to chromosome 13q12.

The lifetime risk for developing ovarian cancer in patients harboring germline mutations in is substantially increased over that of the general population. Two retrospective studies of patients with germline mutations in suggest that the women in these studies have improved survival compared with mutation–negative women.[] Most women with a mutation probably have family members with a history of ovarian and/or breast cancer; therefore, the women in these studies may have been more vigilant and inclined to participate in cancer screening programs that may have led to earlier detection.

For women at increased risk, prophylactic oophorectomy may be considered after age 35 years if childbearing is complete. In a family-based study among 551 women with or mutations, of the 259 women who had undergone bilateral prophylactic oophorectomy, 2 (0.8%) developed subsequent papillary serous peritoneal carcinoma, and 6 (2.8%) had stage I ovarian cancer at the time of surgery. Of the 292 matched controls, 20% who did not have prophylactic surgery developed ovarian cancer. Prophylactic surgery was associated with a reduction in the risk of ovarian cancer that exceeded 90% (relative risk, 0.04; 95% confidence interval, 0.01–0.16), with an average follow-up of 9 years; however, family-based studies may be associated with biases resulting from case selection and other factors that influence the estimate of benefit. After a prophylactic oophorectomy, a small percentage of women may develop a primary peritoneal carcinoma that is similar in appearance to ovarian cancer. (Refer to the Description of the Evidence section in the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention for more information.)

(Refer to the Clinical Management of BRCA Mutation Carriers section in the PDQ summary on Genetics of Breast and Gynecologic Cancers for more information.)

Clinical Presentation

Ovarian, fallopian tube, or peritoneal cancer may not cause early signs or symptoms. When signs or symptoms do appear, the cancer is often advanced. Signs and symptoms include the following:

  • Pain, swelling, or a feeling of pressure in the abdomen or pelvis.
  • Vaginal bleeding that is heavy or irregular, especially after menopause.
  • Vaginal discharge that is clear, white, or colored with blood.
  • A lump in the pelvic area.
  • Gastrointestinal problems such as gas, bloating, or constipation.

These symptoms often go unrecognized, leading to delays in diagnosis. Efforts have been made to enhance physician and patient awareness of the occurrence of these nonspecific symptoms.

Screening procedures such as gynecologic assessment, vaginal ultrasound, and cancer antigen 125 (CA-125) assay have had low predictive value in detecting ovarian cancer in women without special risk factors. As a result of these confounding factors, annual mortality in ovarian cancer is approximately 65% of the incidence rate.

Most patients with ovarian cancer have widespread disease at presentation. Early peritoneal spread of the most common subtype of high-grade serous cancers may relate to serous cancers starting in the fimbriae of the fallopian tubes or in the peritoneum, readily explaining why such cancers are detected at an advanced stage. Conversely, high-grade serous cancers are underrepresented among stage I cancers of the ovary. Other types of ovarian cancers are, in fact, overrepresented in cancers detected in stages I and II. This type of ovarian cancer usually spreads via local shedding into the peritoneal cavity followed by implantation on the peritoneum and via local invasion of bowel and bladder. The incidence of positive nodes at primary surgery has been reported to be as high as 24% in patients with stage I disease, 50% in patients with stage II disease, 74% in patients with stage III disease, and 73% in patients with stage IV disease. The pelvic nodes were involved as often as the para-aortic nodes. Tumor cells may also block diaphragmatic lymphatics. The resulting impairment of lymphatic drainage of the peritoneum is thought to play a role in development of ascites in ovarian cancer. Transdiaphragmatic spread to the pleura is common.

Diagnostic and Staging Evaluation

The following tests and procedures may be used in the diagnosis and staging of ovarian epithelial, fallopian tube, or primary peritoneal cancer:

  • Physical exam and history.
  • Pelvic exam.
  • CA-125 assay.
  • Ultrasound exam (pelvic or transvaginal).
  • Computed tomography (CT) scan.
  • Positron emission tomography (PET) scan.
  • Magnetic resonance imaging (MRI).
  • Chest x-ray.
  • Biopsy.

CA-125 levels can be elevated in other malignancies and benign gynecologic problems such as endometriosis. CA-125 levels and histology are used to diagnose epithelial ovarian cancer.

Prognostic Factors

Prognosis for patients with ovarian cancer is influenced by multiple factors. Multivariate analyses suggest that the most important favorable prognostic factors include the following:

  • Younger age.
  • Good performance status.
  • Cell type other than mucinous or clear cell.
  • Well-differentiated tumor.
  • Early-stage disease.
  • Absence of ascites.
  • Lower disease volume before surgical debulking.
  • Smaller residual tumor after primary cytoreductive surgery.
  • or mutation carrier.

For patients with stage I disease, the most important prognostic factor associated with relapse is grade, followed by dense adherence and large-volume ascites. Stage I tumors have a high proportion of low-grade serous cancers. These cancers have a derivation distinctly different from that of high-grade serous cancers, which usually present in stages III and IV. Many high-grade serous cancers originate in the fallopian tube and other areas of extrauterine Müllerian epithelial origin.

If the tumor is grade III, densely adherent, or stage IC, the chance of relapse and death from ovarian cancer is as much as 30%.

The use of DNA flow cytometric analysis of tumors from stage I and stage IIA patients may identify a group of high-risk patients. Patients with clear cell histology appear to have a worse prognosis. Patients with a significant component of transitional cell carcinoma appear to have a better prognosis.

Case-control studies suggest that and mutation carriers have improved responses to chemotherapy when compared with patients with sporadic epithelial ovarian cancer. This may be the result of a deficient homologous DNA repair mechanism in these tumors, which leads to increased sensitivity to chemotherapy agents.

Follow-up

Because of the low specificity and sensitivity of the CA-125 assay, serial CA-125 monitoring of patients undergoing treatment for recurrence may be useful. However, whether that confers a net benefit has not yet been determined. There is little guidance about how patients should be followed up after initial induction therapy, and neither early detection by imaging or by CA-125 elevation has been shown to alter outcomes. (Refer to the Recurrent or Persistent Ovarian Epithelial, FTC, and PPC Treatment section of this summary for more information.)

Related Summaries

Other PDQ summaries containing information related to ovarian epithelial, fallopian tube, and primary peritoneal cancer include the following:

  • Genetics of Breast and Gynecologic Cancers
  • Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention
  • Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Screening
  • Unusual Cancers of Childhood Treatment (ovarian cancer in children)

Cellular Classification of Ovarian Epithelial Cancer, FTC, and PPC

Table 1 describes the histologic classification of ovarian epithelial cancer, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC).

Stage Information for Ovarian Epithelial Cancer, FTC, and PPC

In the absence of extra-abdominal metastatic disease, definitive staging of ovarian cancer requires surgery. The role of surgery in patients with stage IV ovarian cancer and extra-abdominal disease is yet to be established. If disease appears to be limited to the ovaries or pelvis, it is essential at laparotomy to obtain peritoneal washings and to examine and biopsy or obtain cytologic brushings of the following:

  • Diaphragm.
  • Both paracolic gutters.
  • Pelvic peritoneum.
  • Para-aortic and pelvic nodes.
  • Infracolic omentum.

The Féderation Internationale de Gynécologie et d’Obstétrique (FIGO) Staging

The FIGO and the American Joint Committee on Cancer (AJCC) have designated staging to define ovarian epithelial cancer. The FIGO-approved new staging system for ovarian epithelial cancer, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC) is the one most commonly used.

Treatment Option Overview

Treatment options for patients with all stages of ovarian epithelial cancer, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC) have consisted of surgery followed by platinum-based chemotherapy.

refers to stages I and II. However, because of high recurrence rates for stage II patients in early-stage disease trials, patients with stage II cancers have been included with patients who have more advanced-stage cancer in Gynecologic Oncology Group clinical trials since 2009. Going forward, stage I will remain a separate category for treatment considerations, but high-grade serous stage II cancers are likely to be included with more advanced stages.

Numerous clinical trials are in progress to refine existing therapies and test the value of different approaches to postoperative drug and radiation therapy. Patients with any stage of ovarian cancer are appropriate candidates for clinical trials. Information about ongoing clinical trials is available from the NCI website.

The treatment options for ovarian epithelial cancer, FTC, and PPC are presented in Table 6.

Early-Stage Ovarian Epithelial Cancer, FTC, and PPC Treatment

refers to stage I and stage II. However, because of high recurrence rates for stage II patients in early-stage disease trials, patients with stage II cancers have been included with patients who have more advanced-stage cancer in Gynecologic Oncology Group (GOG) clinical trials since 2009. Going forward, stage I will remain a separate category for treatment considerations, but high-grade serous stage II cancers are likely to be included with more advanced stages.

Standard Treatment Options for Early-Stage Ovarian Epithelial Cancer, FTC, and PPC

Standard treatment options for early-stage ovarian epithelial, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC) include the following:

Surgery with or without chemotherapy

If the tumor is well differentiated or moderately well differentiated, surgery alone may be adequate treatment for patients with stage IA or IB disease. Surgery includes hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. The undersurface of the diaphragm is visualized and biopsied. Biopsies of the pelvic and abdominal peritoneum and the pelvic and para-aortic lymph nodes are also performed. Peritoneal washings are routinely obtained. In patients who desire childbearing and have grade I tumors, unilateral salpingo-oophorectomy may be associated with a low risk of recurrence.

In the United States, except for the most favorable subset of patients (those with stage IA well-differentiated disease), evidence based on double-blinded, randomized, controlled trials with total mortality endpoints supports adjuvant treatment with cisplatin, carboplatin, and paclitaxel.

Evidence (surgery with or without chemotherapy):

Clinical trials evaluating the following treatment approaches have been performed:

  • Intraperitoneal phosphorus 32 or radiation therapy.
  • Platinum-based systemic chemotherapy alone or in combination with alkylating agents.
  • Platinum-based systemic chemotherapy with paclitaxel.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

Advanced-Stage Ovarian Epithelial Cancer, FTC, and PPC Treatment

Treatment options for patients with all stages of ovarian epithelial cancer, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC) have consisted of surgery followed by platinum-based chemotherapy. Because of high recurrence rates for stage II patients in early-stage disease trials, patients with stage II cancers have been included with patients who have more advanced-stage cancer in Gynecologic Oncology Group (GOG) clinical trials since 2009. Going forward, stage I will remain a separate category for treatment considerations, but high-grade serous stage II cancers are likely to be included with more advanced stages.

Standard Treatment Options for Advanced-Stage Ovarian Epithelial Cancer, FTC, and PPC

Standard treatment options for advanced-stage ovarian epithelial cancer, FTC, and PPC include the following:

After initial therapy, consolidation and/or maintenance therapy have not been shown to improve survival. (Refer to the Consolidation and/or maintenance therapy section of this summary for more information.)

Patients diagnosed with advanced disease are treated with surgery and chemotherapy; however, the outcome is generally less favorable for patients with stage IV disease. The role of surgery for patients with stage IV disease is unclear, but in most instances, the bulk of the disease is intra-abdominal, and surgical procedures similar to those used in the management of patients with stage III disease are applied. The options for IP regimens are also less likely to apply both practically (as far as inserting an IP catheter at the outset) and theoretically (aimed at destroying microscopic disease in the peritoneal cavity) in patients with stage IV disease.

Surgery is used to adequately stage the disease and as a therapeutic modality. Surgery includes total abdominal hysterectomy and bilateral salpingo-oophorectomy with omentectomy and debulking of as much gross tumor as can safely be performed.

While primary cytoreductive surgery may not correct for biologic characteristics of the tumor, considerable evidence indicates that the volume of disease left at the completion of the primary surgical procedure is related to patient survival. A literature review showed that patients with optimal cytoreduction had a median survival of 39 months compared with survival of only 17 months in patients with suboptimal residual disease.[]

Results of a retrospective analysis of 349 patients with postoperative residual masses no larger than 1 cm suggested that patients who present at the outset with large-volume disease and achieve small-volume disease by surgical debulking have poorer outcomes than similar patients who present with small-volume disease. Gradual improvement in survival with decreasing residual tumor volume is likely. Although the association may not be causal, retrospective analyses, including a meta-analysis of patients receiving platinum-based chemotherapy, have also found cytoreduction to be an independent prognostic variable for survival. An analysis of 2,655 patients enrolled in (NCT00011986) found that only cytoreduction to node-visible disease that is R0 (i.e., complete surgical resection) had an independent effect on survival.

For the past three decades, the GOG has conducted separate trials for women whose disease has been optimally cytoreduced (defined as ≤1 cm residuum) and for those who had suboptimal cytoreductions (>1 cm residuum). The extent of residual disease after the initial surgery is a determinant of outcome in most series and has been used in the design of clinical trials, particularly by the GOG.

On the basis of these findings, different standard treatment approaches may be used for patients with optimally cytoreduced stage III disease versus patients with suboptimally cytoreduced stage III and stage IV disease. Most studies evaluating intraperitoneal (IP) treatments require making allocations on the basis of the extent of cytoreduction. (Refer to the Surgery followed by intraperitoneal (IP) chemotherapy section of this summary for more information.)

Long-term follow-up of suboptimally debulked stage III and stage IV patients showed a 5-year survival rate lower than 10% with platinum-based combination therapy before the current generation of trials, including taxanes. By contrast, optimally debulked stage III patients treated with a combination of intravenous taxane and IP platinum plus taxane achieved a median survival of 66 months in a GOG trial.[]

Surgery followed by systemic chemotherapy

For patients with residual disease larger than 1 cm after surgery, systemic chemotherapy is the standard. Platinum agents, such as cisplatin or its second-generation analog, carboplatin, given either alone or in combination with other drugs, are the foundation of chemotherapy regimens used. Trials by various cooperative groups (1999–2010) addressed issues of optimal dose-intensity for both cisplatin and carboplatin, schedule, and the equivalent results obtained with either of these platinum drugs, usually in combination with cyclophosphamide.

With the introduction of the taxane paclitaxel, two trials confirmed the superiority of cisplatin combined with paclitaxel when compared with the previous standard treatment of cisplatin plus cyclophosphamide. However, two trials that compared single-agent paclitaxel with either cisplatin or carboplatin (ICON2 and GOG-132) failed to confirm such superiority in all outcome parameters (i.e., response, time-to-progression, and survival) (see Table 7 for a list of these studies).

Based on the evidence, the initial standard treatment for patients with ovarian cancer is the combination of cisplatin or carboplatin with paclitaxel (defined as induction chemotherapy).

Evidence (combination of cisplatin or carboplatin with paclitaxel)

Since the adoption of the standard combination of platinum plus taxane nearly worldwide, clinical trials have demonstrated the following:

In gynecologic cancer, as opposed to breast cancer, weekly paclitaxel was not explored in phase III trials before 2004. The positive results from the Japanese Gynecologic Oncology Group (JGOG) 3016 study (below) have been widely adopted and also led to new divided-dose paclitaxel studies.

Evidence (dose-dense [weekly] treatment schedule):

Surgery followed by intraperitoneal (IP) chemotherapy

The pharmacologic basis for the delivery of anticancer drugs by the IP route was established in the late 1970s and early 1980s. When several drugs were studied, mostly in the setting of minimal residual disease at reassessment after patients had received their initial chemotherapy, cisplatin alone and in combination received the most attention. Favorable outcomes from IP cisplatin were most often seen when tumors had shown responsiveness to platinum therapy and with small-volume tumors (usually defined as tumors <1 cm).

In the 1990s, randomized trials were conducted to evaluate whether the IP route would prove superior to the intravenous (IV) route. IP cisplatin was the common denominator of these randomized trials.

Hyperthermic peritoneal chemotherapy (HIPEC) is another pharmacologically-based modality to enhance the antitumor effects via direct drug delivery to peritoneal surfaces. It was initially tested against mucinous tumors of gastrointestinal origin. Increasingly, HIPEC is being applied to ovarian cancers, with considerable variation in patient selection, drugs administered, and time at target temperatures (most often 30 minutes at 42°C). While exploratory trials are ongoing in the setting of recurrent ovarian cancer, such modalities should not be used as a substitute for intraperitoneal cisplatin-based regimens following initial therapy. The role of HIPEC remains experimental in the treatment of patients with high-grade serous ovarian cancers.

Evidence (surgery followed by IP chemotherapy):

Surgery followed by chemotherapy and bevacizumab

Two phase III trials ( [NCT00262847] and [NCT00483782]) have evaluated the role of bevacizumab in first-line therapy for ovarian epithelial cancer, FTC, and PPC after surgical cytoreduction. Both trials showed a modest improvement in PFS when bevacizumab was added to initial chemotherapy and continued every 3 weeks for 16 and 12 additional cycles, as a maintenance phase.

Evidence (surgery followed by chemotherapy and bevacizumab):

In summary, the evidence does not support the use of bevacizumab as front-line therapy because the gain in PFS comes with increased toxicity, without improvement in OS or quality of life.

Surgery followed by chemotherapy and PARP inhibitors

PARP is a family of enzymes involved in base-excision repair of DNA single-strand breaks. In patients with homologous recombination deficiency (HRD), including patients with germline or (g) mutations or with nongermline HRD–positive tumors, inhibition of PARP results in production of double-strand breaks of DNA. Human DNA repair mechanisms largely rely on one intact copy of the gene; cells with a double-strand break are usually targeted for cell death. This susceptibility of -deficient or -mutant cells to PARP inhibition, has spurred the clinical development of this class of agents. Sensitivity to platinum compounds is a feature of HRD, and a population of platinum-sensitive patients is expected to be HRD-enriched and most likely to benefit from PARP inhibition.

PARP inhibitor trials as maintenance after platinum-based responses

Chemotherapy followed by surgery

Two phase III studies compared the outcome of standard primary cytoreductive surgery (PCS) with that of neoadjuvant chemotherapy (NACT) followed by interval cytoreductive surgery; both studies (described below) demonstrated that PFS and OS were noninferior with use of PCS.

Evidence (chemotherapy followed by surgery):

These studies and additional observational and partially published phase III studies have led to the publication of a Clinical Practice Guideline on behalf of the Society of Gynecologic Oncology and the American Society of Clinical Oncology.

Consolidation and/or maintenance therapy

Trials of consolidation and/or maintenance therapy have been carried out with drugs that contribute to the treatment of recurrent ovarian cancer. Treatments that are given after the initial platinum-and-paclitaxel induction have not been shown to improve survival. These treatments include the following:

  • IP cisplatin (four cycles).
  • Yttrium-labeled radioimmunoconjugate plus IP chemotherapy.
  • IV topotecan (four cycles).
  • Oregovomab vaccination.
  • High-dose chemotherapy with hematopoietic support.
  • Monthly paclitaxel (12 cycles).
  • Erlotinib.

Evidence (consolidation or maintenance therapy):

An accompanying editorial points out the weaknesses of both studies. Both stopped early and were noninformative for a survival endpoint. Also, although both studies addressed the issue of maintenance paclitaxel administered monthly, the patient populations differed. This was reflected by the considerably better outcome in both arms of the Italian study. Taken together, paclitaxel maintenance is of unproven value.

Treatment Options Under Clinical Evaluation

  • Additional IP radioimmunoconjugates, vaccines, and targeted drugs are under clinical evaluation, primarily as consolidation therapy.

Information about ongoing clinical trials is available from the NCI website.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

Recurrent or Persistent Ovarian Epithelial Cancer, FTC, and PPC Treatment

Overall, approximately 80% of patients diagnosed with ovarian epithelial cancer, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC) will relapse after first-line platinum-based and taxane-based chemotherapy and may benefit from subsequent therapies. Early detection of persistent disease by second-look laparotomies after completion of first-line treatment is no longer practiced. When the outcomes in institutions practicing such procedures (50% of institutions) were informally compared with the outcomes in institutions not using such procedures, lack of support for second-look laparotomies grew. This was confirmed in the GOG-0158 trial.

On the other hand, the practice of close follow-up of patients completing treatment by measuring CA-125 levels at intervals of 1 to 3 months was nearly universally adopted. In patients who are in clinical complete remission, increases in CA-125 from their initial treatment represent the most common method to detect disease that will eventually relapse clinically.

Treatment based on abnormal increases in CA-125 in the absence of symptoms or imaging evidence of disease has been addressed in a clinical trial.

Evidence (early vs. delayed initiation of treatment):

Monitoring CA-125 levels in follow-up may play a role in identifying appropriate candidates for secondary cytoreduction, although this strategy awaits confirmation with a randomized trial.

Treatment Options for Patients with Recurrent or Persistent Ovarian Epithelial Cancer, FTC, and PPC

Treatment options for patients with recurrent disease are subdivided as follows:

Other agents that have shown activity in phase II trials are listed in Table 11 and may also be used alone or in combination with other drugs, but such treatments are best done in prospective trials.

Cytoreduction may be used; and this intervention is being studied in the setting of a randomized clinical trial ().

The role of radiation therapy in patients with recurrent ovarian cancer has not been defined.

Platinum-sensitive recurrence

Platinum-containing chemotherapy regimens

Table 9 shows the chemotherapy regimens used in first relapse for the treatment of platinum-sensitive recurrent ovarian cancer.

On the basis of improved survival with etoposide or 5-fluorouracil, carboplatin was approved in 1987 for the treatment of patients with ovarian cancer whose disease recurred after treatment with cisplatin. In a randomized phase II trial of paclitaxel, a currently used second-line drug, the cisplatin-containing combination of cisplatin plus doxorubicin plus cyclophosphamide (CAP), yielded a superior survival outcome. This study and subsequent studies (see Table 9), have reinforced the use of carboplatin as the treatment core for patients with platinum-sensitive recurrences. Cisplatin is occasionally used, particularly in combination with other drugs, because of its lesser myelosuppression, but this advantage over carboplatin is counterbalanced by greater patient intolerance.

Oxaliplatin, initially introduced with the hope that it would overcome platinum resistance, has activity mostly in platinum-sensitive patients but has not been compared with carboplatin alone or in combinations.

With all platinum agents, outcome is generally better the longer the initial interval without recurrence from the initial platinum-containing regimens. Therefore, on occasion, patients with platinum-sensitive recurrences relapsing within 1 year have been included in trials of nonplatinum drugs. In one such trial, comparing the pegylated liposomal doxorubicin to topotecan, the subset of patients who were platinum sensitive had better outcomes with either drug (and in particular with pegylated liposomal doxorubicin) relative to the platinum-resistant cohort.

Several randomized trials have addressed whether the use of a platinum in combination with other chemotherapy agents is superior to single agents (see Table 9).

Evidence (platinum in combination with other chemotherapy agents):

Carboplatin plus paclitaxel has been considered the standard regimen for platinum-sensitive recurrence in the absence of residual neurological toxic effects. The trial is comparing this regimen with the experimental arm that adds bevacizumab to carboplatin plus paclitaxel.

Bevacizumabwith chemotherapy

Evidence (bevacizumab with gemcitabine-carboplatin chemotherapy):

Evidence (bevacizumab with paclitaxel-carboplatin chemotherapy):

PARP is a family of enzymes involved in base-excision repair of DNA single-strand breaks. In patients with homologous recombination deficiency (HRD), including patients with germline or (g) mutations or with nongermline HRD–positive tumors, inhibition of PARP results in production of double-strand breaks of DNA. Human DNA repair mechanisms largely rely on one intact copy of the gene; cells with a double-strand break are usually targeted for cell death. This susceptibility of -deficient or -mutant cells to PARP inhibition, has spurred the clinical development of this class of agents. Sensitivity to platinum compounds is a feature of HRD, and a population of platinum-sensitive patients is expected to be HRD-enriched and most likely to benefit from PARP inhibition.

PARP inhibitor trials as maintenance after platinum-based responses

Platinum-refractory or platinum-resistant recurrence

Chemotherapy and/or bevacizumab

Clinical recurrences that take place within 6 months of completion of a platinum-containing regimen are considered platinum-refractory or platinum-resistant recurrences. Anthracyclines (particularly when formulated as pegylated liposomal doxorubicin), taxanes, topotecan, and gemcitabine are used as single agents for these recurrences on the basis of activity and their favorable therapeutic indices relative to agents listed in Table 11. The long list underscores the marginal benefit, if any, of these agents. Clinical trials should be considered for patients with platinum-resistant disease.

Drugs used to treat platinum-refractory or platinum-resistant recurrence include the following:

  • Paclitaxel.

    Treatment with paclitaxel historically provided the first agent with consistent activity in patients with platinum-refractory or platinum-resistant recurrences. Patients generally received paclitaxel in front-line induction regimens. Re-treatment with paclitaxel, particularly in weekly schedules, had activity comparable with that of other drugs. Residual neuropathy upon recurrence may shift the choice of treatment towards other agents.

  • Topotecan.

    Randomized studies have indicated that the use of topotecan achieved results that were comparable with those achieved with paclitaxel.

    Evidence (topotecan):

  • Pegylated liposomal doxorubicin

    Evidence (pegylated liposomal doxorubicin):

  • Docetaxel.

    This drug has shown activity in paclitaxel-pretreated patients and is a reasonable alternative to weekly paclitaxel in the recurrent setting.

  • Gemcitabine.

    Evidence (gemcitabine):

  • Chemotherapy with or without bevacizumab.

    The U.S. Food and Drug Administration has approved the use of bevacizumab in combination with pegylated liposomal doxorubicin, paclitaxel, or topotecan as a result of the OCEANS and AURELIA trials.

    (NCT00434642) assessed the role of bevacizumab in the treatment of platinum-sensitive recurrences. (Refer to the Bevacizumab with chemotherapy in platinum-sensitive recurrence section of this summary for more information.)

    Evidence (bevacizumab with chemotherapy):

  • Bevacizumab alone.

    Three phase II studies have shown activity for this antibody to vascular endothelial growth factor (VEGF).

  • Pemetrexed.

    Evidence (pemetrexed):

Other drugs used to treat platinum-refractory or platinum-resistant recurrence (efficacy not well defined)

The drugs shown in Table 11 are not fully confirmed to have activity in a platinum-resistant setting, have a less desirable therapeutic index, and have a level of evidence lower than .

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

Changes to This Summary (09/13/2017)

Recurrent or Persistent Ovarian Epithelial Cancer, FTC, and PPC Treatment

An editorial change was made to this section.

This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of ovarian epithelial, fallopian tube, and primary peritoneal cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment are:

  • Leslie R. Boyd, MD (New York University Medical Center)
  • Franco M. Muggia, MD (New York University Medical Center)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated . Available at: https://www.cancer.gov/types/ovarian/hp/ovarian-epithelial-treatment-pdq. Accessed . [PMID: 26389443]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.


A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
R
S
T
U
V
X
Y
Z
#
 
A
B
C
E
F
G
H
K
L
M
N
O
P
R
S
T
U
V
 
 
Manténgase informado con las últimas informaciones de OncoLink!   Suscribirse a OncoLink eNews
Ver nuestros archivos de boletines